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The four-color conjecture

In 1852 Francis Guthrie asked whether it is always possible to color
a map so that any two countries that share a border have different
colors, using no more than four colors.



The four-color theorem conjecture theorem?

1852 Francis Guthrie makes the conjecture.

1879 Alfred Kempe publishes a proof.

1890 Percy Heawood finds a subtle flaw in Kempe’s proof.

1976 Kenneth Appel and Wolfgang Haken show that Kempe’s proof
can fail in no more than 1,834 different ways, and use a
computer to check that none of those is actually possible.

1981 Ulrich Schmidt is rumored to have found a flaw in Appel and
Haken’s proof.

1986 Appel and Haken say that Schmidt’s results have been
misinterpreted and the proof is correct.

“. . . we plan to publish. . . an entire emended version of our original
proof. . . one might think that we would miss the pleasures of dis-
cussing the latest rumors with our colleagues. . . but further consider-
ation leads us to believe that facts have never stopped the propaga-
tion of a good rumor and so nothing much will change.”
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The Kepler conjecture

In 1611, Johannes Kepler conjectured there was no better way of
stacking cannonballs on the deck of a ship than the obvious one.

1611 1998

+ 3GB data

After nearly 400 years, Thomas Hales proved this conjecture, again
using a computer to check a large number of cases.

“The verdict of the referees was that the proof seemed to work,
but they just did not have the time or energy to verify everything
comprehensively. . . the proof was seemingly beyond the ability of the
mathematics community to check thoroughly.” – Henry Cohn
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Formal verification

By programming a computer to understand proofs, it can check the
correctness of a theorem or another program. The programming
language that makes this possible is called a proof assistant.



The Four-Color THEOREM

In 2005, a team led by Benjamin Werner and Georges Gonthier
formally verified the Appel-Haken proof of the four-color theorem
using a computer proof assistant.



Hales’s THEOREM

In 2017, Hales himself led a team that formally verified his proof of
the Kepler conjecture.
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How does it work?

Proof written in a natural human language

Proof encoded in a precise formal language

Proof checker for formal language



So what is a proof, anyway?

Somehow, mathematicians got by for 2000+ years with not much
more formal analysis of this question than Aristotle’s:

All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.

General formal notions of proof were finally discovered in the late
19th century by George Boole, Augustus De Morgan, Charles
S. Peirce, Gottlob Frege, and others.



Proofs have a definition!

All formal systems for proof share the same basic framework:

• There is a finite and complete list of all the “rules” that can
be used in a proof.

• A proof is anything that is constructed by applying these rules.

• Every proof is constructed by using these rules.

• Something that is constructed without using these rules is not
a proof.

This is what enables us to write a computer proof checker: it just
has to verify that each rule is used correctly.



First-order logic

The most basic formal system for proof is called first-order logic.
The things we prove are called logical formulas, built as follows:

• There are “atomic” formulas, like x2 = 3y + 2 or a+ b < c .
• If P and Q are formulas, so are

• P ∧ Q, meaning “P and Q”
• P ∨ Q, meaning “P or Q”
• P ⇒ Q, meaning “if P then Q”
• ¬P, meaning “not P”

• If P(x) is a formula possibly involving a variable x belonging
to a set A, then we have formulas:

• ∃x ∈ A.P(x), meaning “there exists an x ∈ A such that P(x)”
• ∀x ∈ A.P(x), meaning “for all x ∈ A, P(x)”



Nested quantifiers

Example

∀x ∈ R.∃y ∈ R.(x < y)
“For every real number x , there is a real number y such that x < y .”

True!

Example

∃y ∈ R.∀x ∈ R.(x < y)
“There is a real number y such that for any real number x , x < y .”

False!

Example

∀ε ∈ R>0.∃δ ∈ R>0.∀x ∈ R.(|x − a| < δ ⇒ |f (x)− L| < ε)

“For all positive real numbers ε, there exists a positive
real number δ such that for all real numbers x ,

if |x − a| < δ, then |f (x)− L| < ε.”
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Natural deduction

Each operator (∧, ∨, ∃, ∀, . . . ) is “defined” or “explained” by

(1) rule(s) to prove it and (2) rule(s) to use it to prove other things.

Example (⇒, “if-then”)

• To prove P ⇒ Q, we assume P and use this to prove Q.

• To use P ⇒ Q, if we know or can prove P, we can deduce Q.

Example (∨, “or”)
• To prove P ∨ Q, we can prove P.

• To prove P ∨ Q, we can prove Q.

• To use P ∨ Q, we can divide the proof into cases, one of
which assumes P, and the other of which assumes Q.



Natural deduction for quantifiers

Example (∃, “there exists”)

• To prove ∃x ∈ A.P(x), specify some a ∈ A and prove P(a).

• To use ∃x ∈ A.P(x), assume x ∈ A such that P(x).

Example (∀, “for all”)
• To prove ∀x ∈ A.P(x), assume x ∈ A and prove P(x).

• To use ∀x ∈ A.P(x), specify some a ∈ A and deduce P(a).

All men are mortal. ∀x ∈ Men.Mortal(x)
Socrates is a man. Socrates ∈ Men
Therefore, Socrates is mortal. ⊢ Mortal(Socrates)

But first-order logic is much more powerful and flexible than
Aristotelian syllogistic.
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The proliferation of proof assistants

Olorin isn’t flexible enough to formalize all of mathematics, but
many proof assistants are:

Natural human language

Set theory Simple type theory Dependent type theory

Mizar Isabelle HOL Rocq Agda Lean

All formal languages incorporate first-order logic in some way.
But they disagree about where to go from there. . .
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Set theory

First-order logic is great for reasoning about numbers, sets,
functions, etc.

But how do we construct numbers, sets, functions?

Answer #1: set theory

• Everything is coded as a set.

• Sets can be heterogeneous: {17,blue,Q}
• Basically one way to construct sets: {x | P(x)}.
• Axioms written in first-order logic say when this is allowed.

• ∃x .∀y .y /∈ x gives the empty set ∅ = {}.
• ∀x .∀y .∃z .(∀w .w ∈ z ⇐⇒ w = x ∨ x = y) gives {x , y}.
• · · ·



Type theory

Answer #2: type theory

• Many types of objects: numbers, ordered pairs, functions, . . .
Each is primitive and not coded in terms of other things.

• Sets are homogeneous: all elements have the same type.
We identify a type with the set of all elements of that type.

• Each type has ways to construct and ways to use its elements.

• To construct (a, b) ∈ A× B, need a ∈ A and b ∈ B.
• To use p ∈ A× B, have πA(p) ∈ A and πB(p) ∈ B.

• To construct f ∈ A → B, need f (x) ∈ B assuming x ∈ A.
• To use f ∈ A → B, given a ∈ A get f (a) ∈ B.



Why type theory?

Most mathematicians are more familiar with set theory. . .

. . . but only one full-scale proof assistant uses set theory (Mizar)

. . . and it’s quite old: all modern proof assistants use type theory

. . . and even Mizar has a typed layer on top of the set theory!

Why is type theory so much more popular for proof assistants?

One reason is that it’s not enough to just check whether a proof is
correct: we also want useful feedback if it isn’t.
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Explorations in coding

Example

How can we code numbers as sets? Von Neumann’s idea was:
0 = ∅, 1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2, . . . }, . . .
Each natural number is the set of all previous ones.

Example

How can we code an ordered pair (a, b) as a set?

• Can’t use {a, b}, since {a, b} = {b, a}.
• Can’t use {a, {b}}: then

(
{x}, {y}

)
would equal

(
{{y}}, x

)
.

• But (a, b) = {a, {a, b}} works: we can prove∗

{a, {a, b}} = {c , {c , d}} ⇐⇒ a = c and b = d
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Coding collisions

0 = ∅, 1 = {0}, 2 = {0, 1}, 3 = {0, 1, 2, . . . }, . . .
(a, b) = {a, {a, b}}

With these codings,

(0, 0) = {0, {0, 0}} = {0, {0}} = {0, 1} = 2.

Example

If I have a function f : R× R → R and I want to compute f (2, 3),
but I make a typo and write f (2), a pure set-theory-based proof
assistant won’t complain, but will happily compute f (0, 0) instead.
This will eventually cause a problem, but tracking down the true
cause of the problem can be a real pain.

This particular collision (0, 0) = 2 can be avoided by using different
codings, but any coding will have potential collisions.



Solving the problem in type theory

• The natural numbers are the elements of the type N.
Formally, they are expressions of the form

0, S0, SS0,SSS0,SSSS0, . . .

generated by the element 0 and the “successor” operation S .
These are primitive, not coded as anything else.

• Ordered pairs are elements of some product type A× B.
They are also primitive, not coded as anything else.

• If f : R× R → R, writing f (2) is a type error, caught
immediately by the proof assistant as soon as I write it.

This is one reason why all modern proof assistants are based on
some kind of type theory.



Overloading

Another problem is we use the same notation for different things.

Example

When we write x + y , we could mean

• addition of integers

• addition of real numbers

• addition of vectors

• addition of matrices

• addition in any abelian group

How is a poor computer supposed to know which we mean?

If everything is a set, it can’t! Then x and y are always just sets,
and there are infinitely many abelian groups that contain them
both, so who knows which one we had in mind?

But in type theory, it can use the types of x and y to guess.



Type theory and programming

Type theory is also closely related to functional programming
languages like Lisp, Haskell, and OCaml.

f : A× B → B × A f :: (a, b) -> (b, a)

f (x , y) = (y , x) f (x, y) = (y, x)

(defun f (xy) let f : ’a * ’b -> ’b * ’a

(cdr xy . car xy)) = fun (x, y) -> (y, x)

• A constructive definition in type theory runs like a program.

• Proofs using type theory can also reason about programs.

This is another reason type theory is especially well-suited to
computer proof assistants, especially when we want to prove
correctness of programs as well as mathematical theorems.
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But what kind of type theory?

• In set theory, we start with only first-order logic, and assert
axioms in that logic asserting that certain sets exist.

As we’ve seen, the proof assistant Mizar uses set theory.

• In simple type theory, we have both
• type theory, in which we construct sets, pairs, functions, . . .
• first-order logic, in which prove things about them.

Proof assistants like HOL and Isabelle use simple type theory.

• In dependent type theory, we have only type theory, and we
code first-order logic into it.

Proof assistants like NuPRL, Rocq, Agda, Lean, and Narya
use dependent type theory.

How do we code first-order logic into type theory?



Propositions as types

In first-order logic we have natural deduction rules like

• To prove P ⇒ Q, we assume P and use this to prove Q.

• To use P ⇒ Q, if we know P, we can deduce Q.

In type theory we have rules like

• To construct f ∈ A → B, we assume x ∈ A and construct f (x) ∈ B.

• To use f ∈ A → B, if we have a ∈ A, we can get f (a) ∈ B.

These are basically the same!!

Idea
We can code logical formulas as types and proofs as elements.

If we represent P ⇒ Q as P → Q, the type theory rules for
elements of P → Q will give us precisely the first-order logic rules
for proofs involving P ⇒ Q.



The Curry–Howard correspondence

Logical formula Meaning Type

P ⇒ Q if P then Q P → Q
P ∧ Q P and Q P × Q
P ∨ Q P or Q P ⊔ Q

∀x ∈ A,P(x) for all x ∈ A, P(x)
∏

x∈A P(x)
∃x ∈ A,P(x) there exists x ∈ A s.t. P(x)

∐
x∈A P(x)

• P ⊔ Q is the disjoint union, which contains copies of P and Q
that are “tagged” so they don’t overlap.

• Similarly,
∐

x∈A P(x) is the disjoint union of all the P(x).



Dependent types

To consider a type like
∏

x∈A P(x), we need a function P whose
values P(x) are types.

We call this a dependent type over x ∈ A, or a type family indexed
by x ∈ A.

Example

Z/n, the integers mod n, is a type family indexed by n ∈ N.
One element of

∏
n∈N Z/n is the family of zeros

(
[0]n

)
n∈N.

We can represent a dependent type as a function P : A → U ,
where U is a universe: a type whose elements are other types.



Dependent types in programming

Proof assistants using dependent type theory are also programming
languages, which can give more precise types to functions and
eliminate more bugs.

Example

We can define a type Array(n,A) of arrays of type A of length n.
Then we can write functions like

append : Array(m,A) * Array(n,A) -> Array(m+n,A)

head : Array(n+1,A) -> A

In particular, we can guarantee at compile time that there are no
out-of-bounds errors: all indices of array accesses are less than the
length of the array.

“All errors are type errors!”
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What to mention?

Each step in a proof (or construction) involves

• the application of a particular rule

• to particular known or assumed inputs

• to deduce a certain output.

When writing in natural language, we often mention the input and
output statements but not the rule.

“Since x2 + 2xy = 3 and y = 4, we have x2 + 8x = 3.”

Human readers are good at guessing the rule (here, substitution).

Computers, however, find it much easier to deduce the input and
output statements from the rule and the input names.
e.g. if H1:x^2+2*x*y=3 and H2:y=4, the proof “subst H2 H1”
can be deduced to prove x^2+8*x=3.

This is also shorter to write. . . but harder to guess and to read!



Structured proofs

Some proof assistants, like Mizar and Isabelle/Isar and Lurch, allow
us to write proofs like in natural language, emphasizing the
statements rather than the rules.
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Proof terms

Other proof assistants, like Agda and Rocq and Narya, expect
proofs written in a programming language, mentioning only the
rules and the inputs.
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Proof assistance

Many proof assistants also give the user help while constructing or
reading a proof.

• In Agda and Narya, the user can leave “holes” in a definition
or proof, query the proof assistant about the context and goal
for each hole, and then “fill” the hole with a suitable
construction or subproof.

https://agdapad.quasicoherent.io

• In Rocq and Lean, the user can write a “tactic script”
consisting of commands that construct a proof bit by bit, and
“step through” the proof one line at a time seeing the context
and goal at each step.

https://coq.vercel.app/
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Types for Programs and Proofs

Applications for software development

E.g. talks of Sandrine Blazy on CompCert (similar to CakeML)

As of early 2011, the under-development version of CompCert is the only
compiler we have tested for which Csmith cannot find wrong-code errors. This
is not for lack of trying: we have devoted about six CPU-years to the task. The
apparent unbreakability of CompCert supports a strong argument that developing
compiler optimizations within a proof framework, where safety checks are explicit
and machine-checked, has tangible benefits for compiler users

56



Types for Programs and Proofs

Applications for Proofs

The following talk can be interesting

Chritisan Szegedy 09/3/2025 Autoformalization and Verifiable Superintelligence

In particular, he stresses the dichotomy

Informal/Formal

Validation/Verification

57



Types for Programs and Proofs

First example: euclidean and reflexive relations are symmetric

The representation of equality may be the first published example of a proof
in Dependent Type Theory

de Bruijn, The mathematical language Automath, 1969

The example I present is given in

AUTOMATH, A Language for Mathematics, 1973

https://automath.win.tue.nl/archive/pdf/aut030.pdf
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Types for Programs and Proofs

Applications for Proofs

For the next example, I will use the slides of Tristan Stérin at Types 2025

We will represent simple cases of this example in Agda

59
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Does it halt?

0 0 0 0 0 0 0 0 0 000000000

Step #0
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Does it halt?

1 0 0 0 0 0 0 0 0 000000000

Step #1
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Does it halt?

1 1 0 0 0 0 0 0 0 000000000

Step #2
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Does it halt?

1 1 1 0 0 0 0 0 0 000000000

Step #3
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Does it halt?

1 1 1 1 0 0 0 0 0 000000000

Step #4
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Does it halt?

1 1 1 1 0 0 0 0 0 000000000

Step #5
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Does it halt?

1 0 1 1 0 0 0 0 0 000000000

Step #6
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Does it halt?

1 0 1 1 0 0 0 0 0 000000000

Step #6 Will we ever read a 0 in state E ?
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Does it halt?

1 0 1 1 0 0 0 0 0 000000000

Step #6 Will we ever read a 0 in state E ?
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Does it halt?
Yes!

0 1 0 0 1 0 0 1 0 010000000

Step #47,176,870

The machine has halted!!
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Does it halt?
Yes!

20,000-step space-time diagram
● Each row is a successive tape
● White = 1, Black = 0
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Does it halt?

0 1 0 0 1 0 0 1 0 010000000

Step #47,176,870

The machine has halted!!

Can another 5-state machine do better?
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BB(n) = “Maximum number of steps done by a halting 
2-symbol Turing machine with n states starting from 
all-0 memory tape”
T. Radó. On Non-computable Functions. Bell System Technical 
Journal, 41(3):877–884. 1962.

Tibor Radó, 1895 - 1965

BB(n) = “Maximum algorithmic 

bang for your buck”

U
N

C
O

M
P

U
T

A
B

L
E

The Busy Beaver function
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BB(n) = “Maximum number of steps done by a halting 
2-symbol Turing machine with n states starting from 
all-0 memory tape”
T. Radó. On Non-computable Functions. Bell System Technical 
Journal, 41(3):877–884. 1962.

Allen Brady, 1934 - 2024

● BB(1) = 1, BB(2) = 6     [Radó, 1962]
● BB(3) = 21                    [Radó and Lin, 1963]
● BB(4) = 107                  [Brady, 1983]

Small busy beaver values:

A 4-state Turing machine that runs more than 107 steps never halts (from all-0 tape)

The Busy Beaver function



Types for Programs and Proofs

Applications for Proofs

This was solved using computer assistants

For this problem, it is essential to use a computer assistant, like Agda, where
we can do proofs about computation

It is also a good example of why computer assistants can be useful: it facilates
collaborative proofs

“Massively collaborative research projects have a bright future”

One can trust the results proved by somebody else

In this example, students’ or anonymous contributions were essential
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